The pressureless damped Euler–Riesz equations
نویسندگان
چکیده
In this paper, we analyze the pressureless damped Euler-Riesz equations posed in either $\mathbb{R}^d$ or $\mathbb{T}^d$. We construct global-in-time existence and uniqueness of classical solutions for system around a constant background state. also establish large-time behaviors showing towards equilibrium as time goes to infinity. For whole space case, first show algebraic decay rate under additional assumptions on initial data compared theory. then refine argument have exponential convergence even space. case periodic domain, without any further regularity data, provide solutions.
منابع مشابه
On the pressureless damped Euler-Poisson equations with quadratic confinement: critical thresholds and large-time behavior
We analyse the one-dimensional pressureless Euler-Poisson equations with a linear damping and non-local interaction forces. These equations are relevant for modelling collective behavior in mathematical biology. We provide a sharp threshold between the supercritical region with finite-time breakdown and the subcritical region with global-in-time existence of the classical solution. We derive an...
متن کاملA Note on Damped Algebraic Riccati Equations∗
In a recent paper, an algorithm that produces dampening controllers based on a periodic Hamiltonian was proposed. Central to this algorithm is the formulation of symmetric and skew-symmetric damped algebraic Riccati equations. It was shown that solutions to these two Riccati equations lead to a dampening feedback, i.e., a stable closed–loop system for which the real parts of the eigenvalues are...
متن کاملNumerical Integration of Damped Maxwell Equations
We study the numerical time integration of Maxwell’s equations from electromagnetism. Following the method of lines approach we start from a general semidiscrete Maxwell system for which a number of time-integration methods are considered. These methods have in common an explicit treatment of the curl terms. Central in our investigation is the question how to efficiently raise the temporal conv...
متن کاملGlobal Attractors for Damped Semilinear Wave Equations
The existence of a global attractor in the natural energy space is proved for the semilinear wave equation utt + βut − ∆u + f(u) = 0 on a bounded domain Ω ⊂ R with Dirichlet boundary conditions. The nonlinear term f is supposed to satisfy an exponential growth condition for n = 2, and for n ≥ 3 the growth condition |f(u)| ≤ c0(|u|γ + 1), where 1 ≤ γ ≤ n n−2 . No Lipschitz condition on f is assu...
متن کاملInertial manifolds of damped semilinear wave equations
© AFCET, 1989, tous droits réservés. L’accès aux archives de la revue « Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de cop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2022
ISSN: ['0294-1449', '1873-1430']
DOI: https://doi.org/10.4171/aihpc/48